241 research outputs found

    Bescherming bronnen voor drinkwater : De rol van drinkwaterbedrijven

    Get PDF
    VROM-Inspecti

    Regulating Political Parties : European Democracies in Comparative Perspective

    Get PDF
    Regulating Political Parties provides a novel and valuable contribution to the existing literature on political parties by discussing the various dimensions of party law and regulation, in Europe and other regions of the world. To what extent are political parties legitimate objects of state regulation? What are the dilemmas of regulating political finance? To what extent are parties accorded a formal constitutional status? What are the consequences of legal bans on political parties? How do legal arrangements affect parties representing ethnic minorities? These and related questions are discussed and examined from both theoretical and empirical perspectives. By bringing together international experts from the disciplines of law and political science, this volume thus addresses from an interdisciplinary and comparative point of view what has long been a notable lacuna in the study of political parties.9789400601956 (epdf); 9789400601963 (epub)Wetensch. publicati

    MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study.

    Get PDF
    Background: Diffuse intrinsic pontine gliomas (DIPGs) are lethal pediatric brain tumors. Presently, MRI is the mainstay of disease diagnosis and surveillance. We identify clinically significant computational features from MRI and create a prognostic machine learning model. Methods: We isolated tumor volumes of T1-post-contrast (T1) and T2-weighted (T2) MRIs from 177 treatment-naïve DIPG patients from an international cohort for model training and testing. The Quantitative Image Feature Pipeline and PyRadiomics was used for feature extraction. Ten-fold cross-validation of least absolute shrinkage and selection operator Cox regression selected optimal features to predict overall survival in the training dataset and tested in the independent testing dataset. We analyzed model performance using clinical variables (age at diagnosis and sex) only, radiomics only, and radiomics plus clinical variables. Results: All selected features were intensity and texture-based on the wavelet-filtered images (3 T1 gray-level co-occurrence matrix (GLCM) texture features, T2 GLCM texture feature, and T2 first-order mean). This multivariable Cox model demonstrated a concordance of 0.68 (95% CI: 0.61-0.74) in the training dataset, significantly outperforming the clinical-only model (C = 0.57 [95% CI: 0.49-0.64]). Adding clinical features to radiomics slightly improved performance (C = 0.70 [95% CI: 0.64-0.77]). The combined radiomics and clinical model was validated in the independent testing dataset (C = 0.59 [95% CI: 0.51-0.67], Noether's test P = .02). Conclusions: In this international study, we demonstrate the use of radiomic signatures to create a machine learning model for DIPG prognostication. Standardized, quantitative approaches that objectively measure DIPG changes, including computational MRI evaluation, could offer new approaches to assessing tumor phenotype and serve a future role for optimizing clinical trial eligibility and tumor surveillance

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR) can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today.</p> <p>Methods</p> <p>Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations.</p> <p>Results</p> <p>Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects.</p> <p>Conclusion</p> <p>Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking complements and provides incremental information compared to particle tracing that may lead to a better understanding of blood flow and may improve diagnosis and prognosis of cardiovascular diseases.</p
    corecore